
 FileFormat.Info (/index.htm) 

TIFF File Format Summary
Also Known As: Tag Image File Format

Type Bitmap

Colors 1- to 24-bit

Compression Uncompressed, RLE, LZW, CCITT Group 3 and Group 4, JPEG

Maximum Image Size 2^32-1

Multiple Images Per File Yes

Numerical Format See article for discussion

Originator Aldus

Platforms MS-DOS, Macintosh, UNIX, others

Supporting Applications Most paint, imaging, and desktop publishing programs

See Also Chapter 9, Data Compression (/mirror/eg�/ch09_01.htm) (RLE, LZW, CCITT, and JPEG)

Usage
Used for data storage and interchange. The general nature of TIFF allows it to be used in any operating environment, and it is found on most
platforms requiring image data storage.

Comments
The TIFF format is perhaps the most versatile and diverse bitmap format in existence. Its extensible nature and support for numerous data
compression schemes allow developers to customize the TIFF format to �t any peculiar data storage needs.

Vendor speci�cations (spec/index.htm) are available for this format.

Code fragments (code/index.htm) are available for this format.

Sample images (sample/index.htm) are available for this format.

The TIFF speci�cation was originally released in 1986 by Aldus Corporation as a standard method of storing black-and-white images created
by scanners and desktop publishing applications. This �rst public release of TIFF was the third major revision of the TIFF format, and
although it was not assigned a speci�c version number, this release may be thought of as TIFF Revision 3.0. The �rst widely used revision of
TIFF, 4.0, was released in April 1987. TIFF 4.0 added support for uncompressed RGB color images and was quickly followed by the release of
TIFF Revision 5.0 in August 1988. TIFF 5.0 was the �rst revision to add the capability of storing palette color images and support for the LZW
compression algorithm. (See the sidebar on LZW compression in the section called "Compression" (../ti�/index.htm#TIFF-COMP) later in this
article.) TIFF 6.0 was released in June 1992 and added support for CMYK and YCbCr color images and the JPEG compression method. (See the
section called "Color" (/mirror/eg�/ch02_03.htm#COLOR) in Chapter 2, Computer Graphics Basics (/mirror/eg�/ch02_01.htm), for a discussion
of these color images. See Chapter 9 (/mirror/eg�/ch09_01.htm), for a discussion of JPEG compression.)

Contents:
File Organization
File Details
For Further Information

Today, TIFF is a standard �le format found in most paint, imaging, and desktop publishing programs and is a format native to the Microsoft
Windows GUI. TIFF's extensible nature, allowing storage of multiple bitmap images of any pixel depth, makes it ideal for most image storage
needs.

The majority of the description in this chapter covers the current TIFF revision 6.0. Because each successive TIFF revision is built upon the
previous revision, most of the information present in this chapter also pertains to TIFF Revision 5.0 as well. And, although more images are
currently stored in the TIFF 5.0 format than in any other revision of TIFF, quite a few TIFF 4.0 image �les are still in existence. For this reason,

Search

 Security that scales with
your business.

LEARN MORE

http://www.fileformat.info/index.htm
http://www.fileformat.info/mirror/egff/ch09_01.htm
http://www.fileformat.info/format/tiff/spec/index.htm
http://www.fileformat.info/format/tiff/code/index.htm
http://www.fileformat.info/format/tiff/sample/index.htm
http://www.fileformat.info/format/tiff/index.htm#TIFF-COMP
http://www.fileformat.info/mirror/egff/ch02_03.htm#COLOR
http://www.fileformat.info/mirror/egff/ch02_01.htm
http://www.fileformat.info/mirror/egff/ch09_01.htm

information is also included that details the di�erences between the TIFF 4.0, 5.0, and 6.0 revisions.

TIFF has garnered a reputation for power and �exibility, but it is considered complicated and mysterious as well. In its design, TIFF attempts
to be very extensible and provide many features that a programmer might need in a �le format. Because TIFF is so extensible and has many
capabilities beyond all other image �le formats, this format is probably the most confusing format to understand and use.

A common misconception about TIFF is that TIFF �les are not very portable between software applications. This is amazing considering that
TIFF is widely used as an image data interchange format. Complaints include, "I've downloaded a number of TIFF clip art packages from some
BBSs and my paint program or word processor is able to display only some of the TIFF image �les, but not all of them," "When I try to display
certain TIFF �les using my favorite image display program, I get the error message `Unknown Tag Type' or `Unsupported Compression
Type'," and "I have a TIFF �le created by one application and a second application on the same machine cannot read or display the image,
even though TIFF �les created by the second application can be read and displayed by the �rst application."

These complaints are almost always immediately blamed on the TIFF image �les themselves. The �les are labeled "bad," because they have
been munged during a data �le transfer or were exported by software applications that did not know how to properly write a TIFF �le. In
reality, most TIFF �les that do not import or display properly are not bad, and the fault usually lies, instead, with the program that is reading
the TIFF �le.

If an application only uses black-and-white images, it certainly does not need to support the reading and writing of color and gray-scale TIFF
image �les. In this case, the application should simply, and politely, refuse to read non-black-and-white TIFF image �les and tell you the
reason why. By doing this, the application would prevent the user from trying to read unusable image data and would also cut down on the
amount of TIFF code the application programmers need to write.

Some applications that read TIFF image �les--or any type of image �les, for that matter--may just return an ambiguous error code indicating
that the �le could not be read, leaving the user with the impression that the TIFF �le itself is bad (not that the application could not use the
image data the TIFF �le contained). Such an occurrence is the fault of the application designer in not providing a clearer message informing
the user what has happened.

Sometimes, however, you may have an application that should be able to read a TIFF �le, and it does not, even though the type of image data
contained in the TIFF �le is supported by the application. There are numerous reasons why a perfectly good TIFF �le cannot be read by an
application, and most of them have to do with the application programmer's lack of understanding of the TIFF format itself.

A major source of TIFF reader problems is the inability to read data regardless of byte-ordering scheme. The bytes in a 16-bit and 32-bit word
of data are stored in a di�erent order on little-endian architectures (such as the Intel iAPX86), than on big-endian machines (such as the
Motorola MC68000A). Reading big-endian data using the little-endian format results in little more than garbage.

Another major source of problems is readers that do not support the encoding algorithm used to compress the image data. Most readers
support both raw (uncompressed) and RLE-encoded data but do not support CCITT T.4 and T.6 compression. It is also surprising how many
TIFF readers support the reading of color TIFF �les, which are either stored as raw or RLE-compressed data, but do not support the
decompression of LZW-encoded data.

Most other TIFF reader problems are quite minor, but usually fatal. Such problems include failure to correctly interpret tag data, no support
for color-mapped images, or the inability to read a bitmap scan line that contains an odd number of bytes.

File Organization
TIFF �les are organized into three sections: the Image File Header (IFH), the Image File Directory (IFD), and the bitmap data. Of these three
sections, only the IFH and IFD are required. It is therefore quite possible to have a TIFF �le that contains no bitmapped data at all, although
such a �le would be highly unusual. A TIFF �le that contains multiple images has one IFD and one bitmap per image stored.

TIFF has a reputation for being a complicated format in part because the location of each Image File Directory and the data the IFD points to--
including the bitmapped data--may vary. In fact, the only part of a TIFF �le that has a �xed location is the Image File Header, which is always
the �rst eight bytes of every TIFF �le. All other data in a TIFF �le is found by using information found in the IFD. Each IFD and its associated
bitmap are known as a TIFF sub�le. There is no limit to the number of sub�les a TIFF image �le may contain.

Each IFD contains one or more data structures called tags. Each tag is a 12-byte record that contains a speci�c piece of information about the
bitmapped data. A tag may contain any type of data, and the TIFF speci�cation de�nes over 70 tags that are used to represent speci�c
information. Tags are always found in contiguous groups within each IFD.

Tags that are de�ned by the TIFF speci�cation are called public tags and may not be modi�ed outside of the parameters given in the latest
TIFF speci�cation. User-de�nable tags, called private tags, are assigned for proprietary use by software developers through the Aldus
Developer's Desk. See the TIFF 6.0 speci�cation for more information on private tags.

Note that the TIFF 6.0 speci�cation has replaced the term tag with the term �eld. Field now refers to the entire 12-byte data record, while the
term tag has been rede�ned to refer only to a �eld's identifying number. Because so many programmers are familiar with the older
de�nition of the term tag, the authors have choosen to continue using tag, rather than �eld, in this description of TIFF to avoid confusion.

Figure TIFF-1 (../ti�/index.htm#X058-9-TIFF-FG-1) shows three possible arrangements of the internal data structure of a TIFF �le containing
three images. In each example, the IFH appears �rst in the TIFF �le. In the �rst example, each of the IFDs has been written to the �le �rst and
the bitmaps last. This arrangement is the most e�cient for reading IFD data quickly. In the second example, each IFD is written, followed by
its bitmapped data. This is perhaps the most common internal format of a multi-image TIFF �le. In the last example, we see that the
bitmapped data has been written �rst, followed by the IFDs. This seemingly unusual arrangement might occur if the bitmapped data is
available to be written before the information that appears in the IFDs.

Figure TIFF-1: Three possible physical arrangements of data in a TIFF �le

http://www.fileformat.info/format/tiff/index.htm#X058-9-TIFF-FG-1

Figure TIFF-1: Three possible physical arrangements of data in a TIFF �le

Each IFD is a road map of where all the data associated with a bitmap can be found within a TIFF �le. The data is found by reading it directly
from within the IFD data structure or by retrieving it from an o�set location whose value is stored in the IFD. Because TIFF's internal
components are linked together by o�set values rather than by �xed positions, as with stream-oriented image �le formats, programs that
read and write TIFF �les are often very complex, thus giving TIFF its reputation.

The o�set values used in a TIFF �le are found in three locations. The �rst o�set value is found in the last four bytes of the header and
indicates the position of the �rst IFD. The last four bytes of each IFD is an o�set value to the next IFD. And the last four bytes of each tag may
contain an o�set value to the data it represents, or possibly the data itself.

NOTE:
O�sets are always interpreted as a number of bytes from the beginning of the TIFF �le.

Figure TIFF-2 (../ti�/index.htm#X058-9-TIFF-FG-2) shows the way data structures of a TIFF �le are linked together.

Figure TIFF-2: Logical organization of a TIFF �le

File Details
This section describes the various components of a TIFF �le.

Image File Header
TIFF, despite its complexity, has the simplest header of all of the formats described in this book. The TIFF Image File Header (IFH) contains
three �elds of information and is a total of only eight bytes in length:

typedef struct _TiffHeader
{
 WORD Identifier; /* Byte-order Identifier */
 WORD Version; /* TIFF version number (always 2Ah) */
 DWORD IFDOffset; /* Offset of the first Image File Directory*/
} TIFHEAD;

Identi�er contains either the value 4949h (II) or 4D4Dh (MM). These values indicate whether the data in the TIFF �le is written in little-endian
(Intel format) or big-endian (Motorola format) order, respectively. All data encountered past the �rst two bytes in the �le obey the byte-
ordering scheme indicated by this �eld. These two values were chosen because they would always be the same, regardless of the byte order
of the �le.

http://www.fileformat.info/format/tiff/index.htm#X058-9-TIFF-FG-2

Version, according to the TIFF speci�cation, contains the version number of the TIFF format. This version number is always 42, regardless of
the TIFF revision, so it may be regarded more as an identi�cation number, (or possibly the answer to life, the universe, etc.) than a version
number.

A quick way to check whether a �le is indeed a TIFF �le is to read the �rst four bytes of the �le. If they are:

49h 49h 2Ah 00h

or:

4Dh 4Dh 00h 2Ah

then it's a good bet that you have a TIFF �le.

IFDO�set is a 32-bit value that is the o�set position of the �rst Image File Directory in the TIFF �le. This value may be passed as a parameter
to a �le seek function to �nd the start of the image �le information. If the Image File Directory occurs immediately after the header, the value
of the IFDO�set �eld is 08h.

Image File Directory
An Image File Directory (IFD) is a collection of information similar to a header, and it is used to describe the bitmapped data to which it is
attached. Like a header, it contains information on the height, width, and depth of the image, the number of color planes, and the type of
data compression used on the bitmapped data. Unlike a typical �xed header, however, an IFD is dynamic and may not only vary in size, but
also may be found anywhere within the TIFF �le. There may be more than one IFD contained within any �le. The format of an Image File
Directory is shown in Figure TIFF-1 (../ti�/index.htm#X058-9-TIFF-FG-1).

One of the misconceptions about TIFF is that the information stored in the Image File Directory tags is actually part of the TIFF header. In fact,
this information is often referred to as the "TIFF Header Information." While it is true that other formats do store the type of information
found in the IFD in the header, the TIFF header does not contain this information. It is possible to think of the IFDs in a TIFF �le as extensions
of the TIFF �le header.

A TIFF �le may contain any number of images, from zero on up. Each image is considered to be a separate sub�le (i.e., a bitmap) and has an
IFD describing the bitmapped data. Each TIFF sub�le can be written as a separate TIFF �le or can be stored with other sub�les in a single TIFF
�le. Each sub�le bitmap and IFD may reside anywhere in the TIFF �le after the headers, and there may be only one IFD per image.

This may sound confusing, but it's not really. We have seen that the TIFF header contains an o�set value that points to the location of the �rst
IFD in the TIFF �le. To �nd the �rst IFD, all we need do is seek to this o�set and start reading the IFD information. The last �eld of every IFD
contains an o�set value to the next IFD, if any. If the o�set value of any IFD is 00h, then there are no more images left to read in the TIFF �le.

An IFD may vary in size, because it may contain a variable number of data records, called tags. Each tag contains a unique piece of
information, just as �elds do within a header. However, there is a di�erence. Tags may be added and deleted from an IFD much the same
way that notebook paper may be added to or removed from a three-ring binder. The �elds of a conventional header, on the other hand, are
�xed and unmovable, much like the pages of this book. Also, the number of tags found in an IFD may vary, while the number of �elds in a
type header is �xed.

The format of an Image File Directory is shown in the following structure:

typedef struct _TifIfd
{
 WORD NumDirEntries; /* Number of Tags in IFD */
 TIFTAG TagList[]; /* Array of Tags */
 DWORD NextIFDOffset; /* Offset to next IFD */
} TIFIFD;

NumDirEntries is a 2-byte value indicating the number of tags found in the IFD. Following this �eld is a series of tags; the number of tags
corresponds to the value of the NumDirEntries �eld. Each tag structure is 12 bytes in size and, in the sample code above, is represented by
an array of structures of the data type de�nition TIFTAG. (See the next section for more information on TIFF tags.) The number of tags per IFD
is limited to 65,535.

NextIFDO�set contains the o�set position of the beginning of the next IFD. If there are no more IFDs, then the value of this �eld is 00h.

Figure TIFF-3: Format of an Image File Directory

http://www.fileformat.info/format/tiff/index.htm#X058-9-TIFF-FG-1

Tags
As mentioned in the previous section, a tag can be thought of as a data �eld in a �le header. However, whereas a header data �eld may only
contain data of a �xed size and is normally located only at a �xed position within a �le header, a tag may contain, or point to, data that is any
number of bytes in size and is located anywhere within an IFD.

The versatility of the TIFF tag pays a price in its size. A header �eld used to hold a byte of data need only be a byte in size. A tag containing
one byte of information, however, must always be twelve bytes in size.

A TIFF tag has the following 12-byte structure:

typedef struct _TifTag
{
 WORD TagId; /* The tag identifier */
 WORD DataType; /* The scalar type of the data items */
 DWORD DataCount; /* The number of items in the tag data */
 DWORD DataOffset; /* The byte offset to the data items */
} TIFTAG;

TagId is a numeric value identifying the type of information the tag contains. More speci�cally, the TagId indicates what the tag information
represents. Typical information found in every TIFF �le includes the height and width of the image, the depth of each pixel, and the type of
data encoding used to compress the bitmap. Tags are normally identi�ed by their TagId value and should always be written to an IFD in
ascending order of the values found in the TagId �eld.

DataType contains a value indicating the scalar data type of the information found in the tag. The following values are supported:

1 BYTE 8-bit unsigned integer

2 ASCII 8-bit, NULL-terminated string

3 SHORT 16-bit unsigned integer

4 LONG 32-bit unsigned integer

5 RATIONAL Two 32-bit unsigned integers

The BYTE, SHORT, and LONG data types correspond to the BYTE, WORD, and DWORD data types used throughout this book. The ASCII data
type contains strings of 7-bit ASCII character data, which are always NULL-terminated and may be padded out to an even length if necessary.
The RATIONAL data type is actually two LONG values and is used to store the two components of a fractional value. The �rst value stores the
numerator, and the second value stores the denominator.

The TIFF 6.0 revision added the following new data types:

6 SBYTE 8-bit signed integer

7 UNDEFINE 8-bit byte

8 SSHORT 16-bit signed integer

9 SLONG 32-bit signed integer

10 SRATIONAL Two 32-bit signed integers

11 FLOAT 4-byte single-precision IEEE �oating-point value

12 DOUBLE 8-byte double-precision IEEE �oating-point value

The SBYTE, SSHORT, SLONG, and SRATIONAL data types are used to store signed values. The FLOAT and DOUBLE data types are used
speci�cally to store IEEE-format single- and double-precision values. The UNDEFINE data type is an 8-bit byte that may contain untyped or
opaque data and is typically used in private tags. An example of the use of this data type is to store an entire data structure within a private
tag specifying the DataType as UNDEFINE (value of 7) and a DataCount equal to the number of bytes in the structure.

With the exception of the SMinSampleValue and SMaxSampleValue tags (which may use any data type), none of these newer data types is
used by any TIFF 6.0 tags. They are therefore found only in private tags.

DataCount indicates the number of items referenced by the tag and doesn't show the actual size of the data itself. Therefore, a DataCount of
08h does not necessarily indicate that eight bytes of data exist in the tag. This value indicates that eight items exist for the data type speci�ed
by this tag. For example, a DataCount value of 08h and a DataType of 03h indicate that the tag data is eight contiguous 16-bit unsigned
integers, a total of 32 bytes in size. A DataCount of 28h and a DataType of 02h indicate an ASCII character string 40 bytes in length, including
the NULL-terminator character, but not any padding if present. And a DataCount of 01h and a DataType of 05h indicate a single RATIONAL
value a total of eight bytes in size.

DataO�set is a 4-byte �eld that contains the o�set location of the actual tag data within the TIFF �le. If the tag data is four bytes or less in
size, the data may be found in this �eld. If the tag data is greater than four bytes in size, then this �eld contains an o�set to the position of
the data in the TIFF �le. Packing data within the DataO�set �eld is an optimization within the TIFF speci�cation and is not required to be
performed. Most data is typically stored outside the tag, occurring before or after the IFD (see Figure TIFF-3 (../ti�/index.htm#X058-9-TIFF-FG-
3)).

Table TIFF-1 lists all of the public tags included in the TIFF 4.0, 5.0, and 6.0 speci�cations. Note that some tags have become obsolete and are
not found in the current revision of TIFF; however, we provide them because the TIFF 4.0 and TIFF 5.0 specs are still in some use. Also, note
that several tags may support more than one data type.

In the table below, an asterisk (*) means that the tag is de�ned, a hyphen (-) means that the tag is not de�ned, and an "x" means that the tag
is obsolete.

Table TIFF-1: TIFF Tag Types Listed Alphabetically by Name
Tag Name Tag ID Tag Type 4.0 5.0 6.0

Artist 315 ASCII - * *

BadFaxLines[1] 326 SHORT or LONG - - -

BitsPerSample 258 SHORT * * *

CellLength 265 SHORT * * *

CellWidth 264 SHORT * * *

CleanFaxData[1] 327 SHORT - - -

ColorMap 320 SHORT - * *

ColorResponseCurve 301 SHORT * * x

ColorResponseUnit 300 SHORT * x x

Compression 259 SHORT * * *

Uncompressed 1 * * *

CCITT 1D 2 * * *

CCITT Group 3 3 * * *

CCITT Group 4 4 * * *

LZW 5 - * *

JPEG 6 - - *

Uncompressed 32771 * x x

Packbits 32773 * * *

ConsecutiveBadFaxLines[1] 328 LONG or SHORT - - -

Copyright 33432 ASCII - - *

DateTime 306 ASCII - * *

DocumentName 269 ASCII * * *

DotRange 336 BYTE or SHORT - - *

ExtraSamples 338 BYTE - - *

FillOrder 266 SHORT * * *

FreeByteCounts 289 LONG * * *

FreeO�sets 288 LONG * * *

http://www.fileformat.info/format/tiff/index.htm#X058-9-TIFF-FG-3

GrayResponseCurve 291 SHORT * * *

GrayResponseUnit 290 SHORT * * *

HalftoneHints 321 SHORT - - *

HostComputer 316 ASCII - * *

ImageDescription 270 ASCII * * *

ImageHeight 257 SHORT or LONG * * *

ImageWidth 256 SHORT or LONG * * *

InkNames 333 ASCII - - *

InkSet 332 SHORT - - *

JPEGACTTables 521 LONG - - *

JPEGDCTTables 520 LONG - - *

JPEGInterchangeFormat 513 LONG - - *

JPEGInterchangeFormatLength 514 LONG - - *

JPEGLosslessPredictors 517 SHORT - - *

JPEGPointTransforms 518 SHORT - - *

JPEGProc 512 SHORT - - *

JPEGRestartInterval 515 SHORT - - *

JPEGQTables 519 LONG - - *

Make 271 ASCII * * *

MaxSampleValue 281 SHORT * * *

MinSampleValue 280 SHORT * * *

Model 272 ASCII * * *

NewSubFileType 254 LONG - * *

NumberOfInks 334 SHORT - - *

Orientation 274 SHORT * * *

PageName 285 ASCII * * *

PageNumber 297 SHORT * * *

PhotometricInterpretation 262 SHORT * * *

WhiteIsZero 0 * * *

BlackIsZero 1 * * *

RGB 2 * * *

RGB Palette 3 - * *

Tranparency Mask 4 - - *

CMYK 5 - - *

YCbCr 6 - - *

CIELab 8 - - *

PlanarCon�guration 284 SHORT * * *

Predictor 317 SHORT - * *

PrimaryChromaticities 319 RATIONAL - * *

ReferenceBlackWhite 532 LONG - - *

ResolutionUnit 296 SHORT * * *

RowsPerStrip 278 SHORT or LONG * * *

SampleFormat 339 SHORT - - *

SamplesPerPixel 277 SHORT * * *

SMaxSampleValue 341 Any - - *

SMinSampleValue 340 Any - - *

Software 305 ASCII - * *

StripByteCounts 279 LONG or SHORT * * *

StripO�sets 273 SHORT or LONG * * *

SubFileType 255 SHORT * x x

T4Options[2] 292 LONG * * *

T6Options[3] 293 LONG * * *

TargetPrinter 337 ASCII - - *

Thresholding 263 SHORT * * *

TileByteCounts 325 SHORT or LONG - - *

TileLength 323 SHORT or LONG - - *

TileO�sets 324 LONG - - *

TileWidth 322 SHORT or LONG - - *

TransferFunction[4] 301 SHORT - - *

TransferRange 342 SHORT - - *

XPosition 286 RATIONAL * * *

XResolution 282 RATIONAL * * *

YCbCrCoe�cients 529 RATIONAL - - *

YCbCrPositioning 531 SHORT - - *

YCbCrSubSampling 530 SHORT - - *

YPosition 287 RATIONAL * * *

YResolution 283 RATIONAL * * *

WhitePoint 318 RATIONAL - * *

Table Footnotes:

[1] Tags BadFaxLines, CleanFaxData, and ConsecutiveBadFaxLines are part of TIFF Class F now maintained by Aldus and are not actually
de�ned by the TIFF 6.0 speci�cation.

[2] Tag 292 was renamed from Group3Options to T4Options in TIFF 6.0.

[3] Tag 293 was renamed from Group3Options to T6Options by TIFF 6.0.

[4] Tag 301 was renamed from ColorResponseCurve to TransferFunction by TIFF 6.0.

Organization of TIFF Tag Data
To keep developers from having to guess which tags should be written to a TIFF �le and what tags are important to read, the TIFF
speci�cation de�nes the concept of baseline TIFF images. These baselines are de�ned by the type of image data they store: bi-level, gray-
scale, palette-color, and full-color. Each baseline has a minimum set of tags, which are required to appear in each type of TIFF �le.

In the TIFF 5.0 speci�cation, these baselines were referred to as TIFF classes. Each TIFF �le consisted of a common baseline (Class X) and was
modi�ed by an additional class depending upon the type of image data stored. The classes were Class B (bi-level), Class G (gray-scale), Class P
(palette-color), and Class R (full-color RGB).

The TIFF 6.0 speci�cation rede�nes these classes into four separate baseline TIFF �le con�gurations. Class X is combined with each of the
other four classes to form the bi-level, gray-scale, color-palette, and full-color baselines. Although TIFF 6.0 largely does away with the concept
of TIFF classes, it is likely that because more TIFF 5.0 format �les exist than any other, TIFF �les will be referred to by these class designations
for many years to come.

It is worth mentioning that a de facto TIFF class, Class F, exists speci�cally for the storage of facsimile images using the TIFF format. This class
of TIFF �le, created by Cygnet Technologies, is used by Everex products to store facsimile data, and is also known as the Everex Fax File
Format. Although Cygnet Technologies is no longer in business, TIFF Class F remains in use and is considered by some to be an excellent
storage format for facsimile data.

Table TIFF-2 lists the minimum required tags that must appear in the IFD of each TIFF 6.0 baseline. Note that several of these tags have
default values that are used if the tag does not actually appear in a TIFF �le:

Bi-level (formerly Class B) and gray-scale (formerly Class G) TIFF �les must contain the thirteen tags listed. These tags must appear in all
revision 5.0 and 6.0 TIFF �les regardless of the type of image data stored.

Palette-color (formerly Class P) TIFF �les add a fourteenth required tag that describes the type of palette information found within the
TIFF image �le.

RGB (formerly Class R) TIFF �les contain the same tags as bi-level TIFF �les and add a fourteenth required tag, which describes the format
of the bitmapped data in the image.

YCbCr TIFF �les add four additional tags to the baseline.

Class F TIFF �les add three tags.

Table TIFF-2: Minimum Required Tags for Each TIFF Class
Class Name Tag Type Tag Name

Bi-level and 254 NewSub�leType

Gray-scale 256 ImageWidth

257 ImageLength

258 BitsPerSample

259 Compression

262 PhotometricInterpretation

273 StripO�sets

277 SamplesPerPixel

278 RowsPerStrip

279 StripByteCounts

282 XResolution

283 YResolution

296 ResolutionUnit

The following classes contain the above 13 tags plus the following tags:

Palette-color 320 ColorMap

RGB 284 PlanarCon�guration

YCbCr 529 YCbCrCoe�cients

530 YCbCrSubSampling

531 YCbCrPositioning

532 ReferenceBlackWhite

Class F 326 BadFaxLines

327 CleanFaxData

328 ConsecutiveBadFaxLines

All other tags found in the TIFF speci�cation are available to meet developer's needs. While a TIFF reader must be able to support the parsing
and interpretation of all tags it considers necessary, it is certainly not necessary for a TIFF writer to include as many tags as possible in every
TIFF �le written.

Image Data

TIFF �les contain only bitmap data, although adding a few tags to support vector- or text-based images would not be a hard thing to do. As
we have seen, the bitmapped data in a TIFF �le does not always appear immediately after the image header, as with most other formats.
Instead, it may appear almost anywhere within the TIFF �le. And, because the majority of the work performed by a TIFF reader and writer is
the creation and manipulation of the image data, a thorough understanding of how the image data is stored within a TIFF �le is necessary,
starting with the concept of strips.

NOTE:
TIFF 6.0 images may contain tiles rather than strips.

Strips
It is always amusing to come across a TIFF reader or viewer whose author posts the caveat in the source code, "This TIFF reader does not
support stripped images." A large proportion of TIFF readers who fail to read certain TIFF image �les do so because the author of the reader
did not quite understand the concept of how image data can be organized within a TIFF �le. In this case, not only did the author of the reader
fail to understand how to write code to read strips, he or she also failed to realize that every TIFF 5.0 (and earlier) image contains strips.

A strip is an individual collection of one or more contiguous rows of bitmapped image data. Dividing the image data into strips makes
bu�ering, random access, and interleaving of the image data much easier. This concept exists in several other image �le formats, and is
given names such as blocks, bands, and chunks. TIFF strips di�er from other such concepts in several important ways due to the structure of
the TIFF format.

Three tags are necessary to de�ne the strips of bitmapped data within a TIFF �le. These three tags are RowsPerStrip, StripO�sets, and
StripByteCounts.

The �rst required tag, RowsPerStrip, indicates the number of rows of compressed bitmapped data found in each strip. The default value for
RowsPerStrip is 2^32-1, which is the maximum possible size of a TIFF image. All of the strips in a TIFF sub�le must use the same compression
scheme and have the same bit sex, color sex, pixel depth, and so on. To �nd the number of strips in a non-YCbCr sub�le image, we would use
the RowsPerStrip tag, the ImageLength tag, and the following calculation:

StripsInImage =
 floor((ImageLength * (RowsPerStrip - 1)) / RowsPerStrip);

The second required tag, StripO�sets, is important because without it a TIFF reader has absolutely no hope of locating the image data within
a TIFF �le. This tag contains an array of o�set values, one per strip, which indicate the position of the �rst byte of each strip within the TIFF
�le. The �rst value in the array is for the �rst strip, the second value for the second strip, and so on. If the image data is separated into planes
(PlanarCon�guration = 2), StripO�sets contains a 2D array of values, which is SamplesPerPixel in width. All of the columns for color
component (plane) 0 are stored �rst, followed by all the columns for color component (plane) 1, and so forth. The strips of planar image data
may be written to the TIFF �le in any order but are typically written by plane (RRRRGGGGBBBB) or by color component (RGBRGBRGBRGB).
StripO�sets values are always interpreted from the beginning of the �le.

The StripO�sets tag allows each strip in a TIFF �le to have a location that is completely independent from all other strips in the same sub�le.
This means that strips may occur in any order and be found anywhere within the TIFF �le. Many "quick and dirty" TIFF readers �nd the
beginning of the �rst strip and then attempt to read in the image data as one large chunk without checking the StripO�sets array for the
position of each additional strip. This technique works if all the strips in the TIFF �le are contiguously written to the TIFF �le and are in the
same consecutive order as the original rows in the bitmap. If the strips are stored out of sequence, perhaps in a planar or interlaced fashion,
or are aligned on paragraph or page boundaries, the image data read will not be in its proper order, and the image will appear sliced up and
rearranged on the display. If the strips are stored in a fairly random fashion, a large part of the data read might not be part of the image, or
even the TIFF �le itself. In this case, anything that is displayed would be mostly garbage.

The value of the RowsPerStrip tag and the size of each element in the array of the StripO�sets tag is usually a LONG (32-bit) value. TIFF 5.0
added the ability of this tag to use SHORT (16-bit) values instead. Very old TIFF readers may expect the values in this tag to always be LONG
and will therefore read the o�set values improperly if they are SHORT. This modi�cation was made primarily for TIFF readers that read the
StripO�sets values into an array in memory before using them. The TIFF 6.0 speci�cation suggests that the o�set values should not require
such an array to be larger than 64K in size.

The third tag, StripByteCounts, maintains an array of values that indicates the size of each strip in bytes. And, like the StripO�sets tag, this tag
is also an array of values, one per strip, 1D for chunky format and 2D for planar format, each of which is calculated from the number of bytes
of compressed bitmapped data stored in each strip.

This tag is necessary because there are several cases in which the strips in an image may each contain a di�erent number of bytes. The �rst
case occurs when using compressed bitmapped image data. As we have said, the StripBytesCounts value is the size of the image data after it
is compressed. Although there is a �xed number of bytes in an uncompressed row, the size of a compressed row varies depending upon the
data it contains. Because we are always storing a �xed number of rows, not bytes, per strip, it is likely that most strips will be of di�erent
lengths because each compressed row will vary in size. Only when the bitmap data is not compressed will each strip be the same size.

Well, almost... The last strip in an image is sometimes an exception. TIFF writers typically attempt to create strips so that each strip in a TIFF
image has the same number of rows. For example, a bitmap with 2200 rows can be divided into 22 strips, each containing 100 rows of
bitmapped data. However, it is not always possible to divide the number of rows equally among the desired number of strips. For example, if
we needed to divide a bitmap containing 482 rows into strips containing �ve rows each, we would end up with a total of 97 strips, 96 strips
containing �ve rows of data and the 97th strip containing the remaining two rows. The RowsPerStrip tag value of 5 would be correct for all
strip lengths except for the last strip.

The truth is that a TIFF reader does not need to know the number of rows in each strip to read the image data, only the number of bytes.
Otherwise, the TIFF speci�cation would require that every "short" strip be padded with additional rows of dummy data, but it doesn't.
Instead, we simply read the last StripByteCounts value to determine how many bytes to read for the last strip. What the TIFF speci�cation
doesn't make clear is that the RowsPerStrip value speci�es the maximum value, and not the required value, of the number of rows per strip.
Many TIFF �les, in fact, store a single strip of data and specify an arbitrarily large RowsPerStrip value.

There are several advantages to organizing bitmap data in strips.

First, not all applications can read an entire �le into memory. Many desktop machines still have only one megabyte or less of memory
available to them. And even if a system has gobs of memory, there is no guarantee that a TIFF reader will be able to use it. Such a TIFF reader
can allocate the largest bu�er it can manage and then read in the bitmapped data one strip at a time until the bu�er is �lled. If the image is
panned or scrolled, data in the bu�er can be discarded and more strips read in. If the entire image can �t in memory, all the strips in the TIFF
�le would then be read.

Because compressed strips can vary in size, the StripByteCounts values cannot be accurately used by an application to dynamically allocate a
bu�er in memory (unless every value is read and the largest value is used to allocate the bu�er). Therefore, it is recommended that each
strip be limited to about 8K in size. If a TIFF reader can allocate a much larger bu�er than 8K, then multiple strips may be read into the bu�er.
Although TIFF strips can be larger, perhaps to support an image where each compressed or uncompressed row is greater than 8K in size, the
size of a strip should never exceed 64K. Allocating a bu�er greater than 64K can be a bit tricky when using certain system architectures.

Second, having access to a table of strip o�sets makes random access of the bitmapped data easier. If a TIFF reader needed to display the
last 100 rows of a 480-row image, and the bitmaps were divided into 48 strips of 10 rows each, the reader would skip over the �rst 380 rows
and read in the strips stored at the last 10 o�sets in the StripO�sets tag array. If no strip o�sets were present, the entire image would need
to be read to �nd the starting position of the last 100 rows.

And while it is possible that the bitmap in a TIFF �le may be written out as one long strip--and many TIFF �les are written this way--it is not a
good idea to do so. These so-called unstripped images often fail because an application must attempt to allocate enough memory to hold the
entire image. For large images, or small systems, enough memory may not be available. One can only hope that a TIFF �le reader would exit
from such a situation gracefully.

Tiles
Strips are not the only possible way to organize bitmapped data. TIFF 6.0 introduced the concept of tiled, rather than stripped, bitmapped
data. A strip is a 1D object that only has a length. A tile can be thought of as a 2D strip that has both width and length, very similar to a
bitmap. In fact, you can think of each tile in an image as a small bitmap containing a piece of a larger bitmap. All you need to do is �t the tiles
together in their proper locations to get the image. (This concept only serves to remind me that I must replace the linoleum in my bathroom
one day.)

Dividing an image into rectangular tiles rather than horizontal strips has the greatest bene�t on very large high-resolution images. Many
electronic document imaging (EDI) applications cannot manipulate images larger than E size (6848 pixels wide by 8800 pixels long) because of
the large amount of memory required to bu�er, decompress, and manipulate even a few hundred rows of image data. Even if you just
wanted to display the upper-left corner of an image you would still be forced to decompress the entire strip and maintain it in memory. If the
image data were tiled, however, you would only decompress the tiles that contained the image data for the part of the image you wanted to
display.

Many compression algorithms, such as JPEG, compress data not as 1D strips, but instead as 2D tiles. Storing the compressed data as tiles
optimizes the decompression of the data quite a bit. In fact, the support of 2D compression algorithms is perhaps the primary reason why
the capability of tiling image data was added to TIFF 6.0.

When tiles are used instead of strips, the three strip tags, RowsPerStrip, StripByteCounts, and StripO�sets, are replaced by the tags TileWidth,
TileLength, TileO�sets, and TileByteCounts. As you might have guessed, the tile tags are used in much the same way that the strips tags are.
And, like strips, tiles are either all uncompressed, or all compressed using the same scheme. Also, TIFF images are either striped or tiled, but
never both.

TileWidth and TileLength describe the size of the tiles storing the image data. The values of TileWidth and TileLength must be a multiple of 16,
and all tiles in a sub�le are always the same size. These are important compatibility considerations for some applications, especially when
using the tile-oriented JPEG compression scheme. The TIFF 6.0 speci�cation recommends that tiles should contain 4K to 32K of image data
before compression. Finally, tiles need not be square. Rectangular tiles compress just as well.

The TileWidth and TileLength tag values can be used to determine the number of tiles in non-YCbCr image sub�les:

TilesAcross = (ImageWidth + (TileWidth - 1)) / TileWidth;
TilesDown = (ImageLength + (TileLength - 1)) / TileLength;
TilesInImage = TilesAcross * TilesDown;

If the image is separated into planes (PlanarCon�guration = 2), the number of tiles is calculated like this:

TilesInImage = TilesAcross * TilesDown * SamplesPerPixel;

The TileO�sets tag contains an array of o�sets to the �rst byte of each tile. Tiles are not necessarily stored in a contiguous sequence in a
sub�le. Each tile has a separate location o�set value and is independent of all other tiles in the sub�le. The o�sets in this tag are ordered left-
to-right and top-to-bottom. If the image data is separated into planes, all of the o�sets for the �rst plane are stored �rst, followed by the

o�sets for the second plane, and so on. The number of o�set values in this tag are equal to the number of tiles in the image
(PlanarCon�guration = 1) or the number of tiles multiplied by the SamplesPerPixel tag value (PlanarCon�guration = 2). All o�set values are
interpreted from the beginning of the TIFF �le.

The �nal tag, TileByteCounts, contains the number of bytes in each compressed tile. The number of values in this tag is also equal to the
number of tags in the image, and the values are ordered the same way as the values in the TileO�sets tag.

Normally, a tile size is chosen that �ts an image exactly. An image 6400 pixels wide by 4800 pixels long may be divided evenly into 150 tiles,
each 640 pixels wide by 320 pixels long. However, not all image dimensions are divisible by 16. An image 2200 pixels wide by 2850 long
cannot be evenly divided into tiles whose size must be multiples of 16. The solution is to choose a "best-�t" tile size and �ll out the image
data with padding.

To �nd a best-�t tile size, we must choose a tile size that minimally overlaps the size of the image. In this example, we want to use tiles that
are 256 pixels wide by 320 pixels long, roughly the same aspect ratio as the image. Using tiles this size requires that 104 extra pixels of
padding be added to each row and that 30 additional rows be added to the image length. The size of the image data plus padding is now
2304 pixels wide by 2880 pixels long and can be evenly divided among 81 of our 256 by 320 pixel tiles.

In this example, you may notice that the total amount of padding added to the image before tiling is 365,520 pixels. For a 1-bit image, this
equals an extra 45,690 bytes of image data. No appreciable gain in compression results from tiling small images. Also, avoid using tiles that
are excessively large and require excessive amounts of padding.

Compression
TIFF supports perhaps more types of data compression than any other image �le format. It is also quite possible to use an unsupported
compression scheme just by adding the needed user-de�ned tags. TIFF 4.0 supported only Run-Length Encoding (RLE) and CCITT T.4 and T.6
compression. These compression schemes are typically only for use with 8-bit color, and gray-scale and 1-bit black-and-white images,
respectively. TIFF 5.0 added the LZW compression scheme, typically for color images, and TIFF 6.0 added the JPEG compression method for
use with continuous-tone color and gray-scale images. (All of these data compression schemes, including a variety of RLE algorithms, are
discussed in Chapter 9 (/mirror/eg�/ch09_01.htm).)

LZW Is Not Free
If you are creating or modifying software that implements the LZW algorithm, be aware that under certain circumstances, you will need to
pay a licensing fee for the use of LZW.
Unisys Corporation owns the patent for the LZW codec (encoding/decoding algorithm) and requires that a licensing fee be paid for each
software program which implements the LZW algorithm.
Many people have concluded that the Unisys licensing claim applies only to LZW encoders (software that creates LZW data) and not to
LZW decoders (software that only reads LZW data). However, Unisys believes that its patent covers the full LZW codec and requires a
licensing fee even for software that reads, but does not write, LZW data.
For more information about the entire issue of LZW licensing, refer to the section called "LZW Legal Issues"
(/mirror/eg�/ch09_04.htm#CH-09-LZW-LEGAL) in Chapter 9 (/mirror/eg�/ch09_01.htm). For a popular alternative to graphics �le formats
that use LZW, consider using the Portable Network Graphics (PNG (../png/index.htm)) �le format.

TIFF uses the PackBits RLE compression scheme found in the Macintosh toolbox. PackBits is a simple and e�ective algorithm for compressing
data and is easy to implement. The name "PackBits" would lead a programmer to believe that it is a bit-wise RLE, packing runs of bits.
However, PackBits is a byte-wise RLE and is most e�cient at encoding runs of bytes.

PackBits actually has three types of data packets that may be written to the encoded data stream. The �rst is a two-byte encoded run packet.
The �rst byte (the run-count byte) indicates the number of bytes in the run, and the second byte stores the value of each byte in the run. The
actual run-count value stored is in the range 0 to 127 and represents the values 1 to 128 (run count + 1).

Another type of packet, the literal run packet, stores 12 to 128 bytes literally in the encoded data stream without compressing them. Literal
run packets are used to store data with very few runs, as found in very complex or noisy images. The literal run packet's run count is in the
range of -127 to -1, indicating that 2 to 128 run values (-(run count) + 1) follow the run count byte.

The last type of packet is the no-op packet. No-ops are one byte in length and have a value of -128. The no-op packet has no use in the
PackBits compression scheme and is therefore never found in PackBits-encoded data.

Decompressing PackBits-encoded data is a simple matter of reading a packet of encoded data and converting it to the appropriate byte run.
Once again, the run-count byte value is stored one less than the actual number of bytes in the run. It is therefore necessary to add one to the
run-count value before using it.

Refer to the TIFF 6.0 speci�cation for more information on PackBits compression, and to Chapter 9 (/mirror/eg�/ch09_01.htm), for more
information on RLE algorithms.

http://www.fileformat.info/mirror/egff/ch09_01.htm
http://www.fileformat.info/mirror/egff/ch09_04.htm#CH-09-LZW-LEGAL
http://www.fileformat.info/mirror/egff/ch09_01.htm
http://www.fileformat.info/format/png/index.htm
http://www.fileformat.info/mirror/egff/ch09_01.htm

NOTE: Problems with TIFF 6.0 JPEG
Commentary by Dr. Tom Lane of the Independent JPEG Group, a member of the TIFF Advisory Committee
TIFF 6.0 added JPEG to the list of TIFF compression schemes. Unfortunately, the approach taken in the 6.0 speci�cation is a very poor
design. A new design has been developed by the TIFF Advisory Committee. If you are considering implementing JPEG in TIFF, I strongly
urge you to follow the revised design described in TIFF Tech Note #2 rather than that of the 6.0 spec.
The fundamental problem with the TIFF 6.0 JPEG design is that JPEG's various tables and parameters are broken out as separate �elds,
which the TIFF control logic must manage. This is bad software engineering--that information should be private to the JPEG
compressor/decompressor. Worse, the �elds themselves are speci�ed without thought for future extension and without regard to well-
established TIFF conventions. Here are some of the more signi�cant problems:

The JPEG table �elds use a highly nonstandard layout: rather than containing data directly in the �eld structure, the �elds
hold pointers to information elsewhere in the �le. This requires special-purpose code to be added to every TIFF-manipulating
application. Even a trivial TIFF editor (for example, a program to add an ImageDescription �eld to a TIFF �le) must be
explicitly aware of the internal structure of the JPEG-related tables, or it will probably break the �le. Every other auxiliary
�eld in TIFF follows the normal TIFF rules and can be copied or relocated by standard code.
The speci�cation requires the TIFF control logic to know a great deal about JPEG details--for example, such arcana as how to
compute the length of a Hu�man code table. The length is not supplied in the �eld structure and can be found only by
inspecting the table contents.
The design speci�es separate Hu�man tables for each color component. This neglects the fact that baseline JPEG codecs may
support only two sets of Hu�man tables. Thus, an encoder must either waste space (by storing duplicate Hu�man tables) or
violate the TIFF convention that prohibits duplicate pointers. Furthermore, baseline decoders must test to see which tables
are identical--a waste of time and code space.
The JPEGInterchangeFormat �eld again violates the proscription against duplicate pointers; it envisions having the normal
strip/tile pointers pointing into the larger data area pointed to by JPEGInterchangeFormat. TIFF editing applications must be
speci�cally aware of this relationship, because they must maintain it or, if they can't, must delete the
JPEGInterchangeFormat �eld.
The JPEGQTables �eld is �xed at a byte per table entry; there is no way to support 16-bit quantization values. This is a serious
impediment to extending TIFF to use 12-bit JPEG.
The design cannot support using di�erent quantization tables in di�erent strips/tiles of an image (so as to encode some
areas at higher quality than others). Furthermore, because quantization tables are tied one-for-one to color components, the
design cannot support table switching options that are likely to be added in future JPEG extensions.

In addition to these major design errors, the TIFF 6.0 JPEG speci�cation is seriously ambiguous. In particular, several incompatible
interpretations are possible for its handling of JPEG restart markers, and Section 22, "JPEG Compression," actually contradicts Section 15,
"Tiled Images," about the restrictions on tile sizes.
Finally, the 6.0 design creates problems for implementations that need to keep the JPEG codec separate from the TIFF control logic--
consider using a JPEG chip that was not designed speci�cally for TIFF. JPEG codecs generally want to produce or consume a standard JPEG
datastream, not just raw data. (If they do handle raw data, a separate out-of-band mechanism must be provided to load tables into the
codec.) With such a codec, the TIFF control logic must be prepared to parse JPEG markers to create the TIFF table �elds (when encoding)
or to synthesize JPEG markers from the �elds (when decoding). Of course, this means that the control logic must know a great deal more
about JPEG than we would like. The parsing and reconstruction of the markers also represents a fair amount of unnecessary work.
Due to all these problems, the TIFF Advisory Committee has developed a replacement JPEG-in-TIFF scheme. The rough outline is as
follows:

1. Each image segment (strip or tile) in a JPEG-compressed TIFF image contains a legal JPEG datastream, complete with all
markers. This data forms an independent image of the proper dimensions for the strip or tile.

2. To avoid duplicate tables in a multi-segment �le, segments may use the JPEG "abbreviated image data" datastream
structure, in which DQT and DHT tables are omitted. The common tables are to be supplied in a JPEG "abbreviated table
speci�cation" datastream, which is contained in a newly de�ned "JPEGTables" TIFF �eld. Because the tables in question
typically amount to 550 bytes or so, the savings are worthwhile.

3. All the �eld de�nitions in the existing Section 22, "JPEG Compression," are deleted. (In practice, those �eld tag values will
remain reserved inde�nitely, and this scheme will use a new Compression code, Compression = 7. Implementations that
have TIFF 6.0-style �les to contend with may continue to read them, using whatever interpretation of 6.0 they used before.)

This replacement design is described in TIFF Tech Note #2. The Tech Note is currently being distributed in draft form, because Adobe has
not yet formally accepted it. However, I expect that the Note will be accepted as is, and that the design it describes will replace the existing
Section 22 when version 7.0 of the TIFF spec is released.
If you are considering implementing JPEG in TIFF, please use the design of the Tech Note. The 6.0 JPEG design has not been widely
implemented, and with any luck it will stay that way.

For Further Information
For further information about the TIFF format, see the speci�cation.

TIFF was formerly maintained by the Aldus Developer's Association. Aldus has recently merged with Adobe Systems, which now holds the
copyright to the TIFF speci�cation and administers and maintains the TIFF format.

All information on the TIFF format may now be obtained through the Adobe Developer Support group. However, this group supplies only
general TIFF information and does not provide any TIFF tutoring, sample TIFF source code, or sample TIFF �les. Contact the Adobe Developer
Support group, at devsup-person@adobe.com

Questions about the the Adobe Developer's Association should be directed to:

Adobe Developer's Association
1585 Charleston Road
P.O. Box 7900
Mountain View CA 94039-7900
Voice: 415-961-4111
FAX: 415-967-9231
FTP: ftp://ftp.adobe.com
WWW: http://www.adobe.com/Support/ADA.html
BBS: 206-623-6984

Adobe distributes the TIFF 6.0 speci�ction in PDF format in the "Technical Notes for Developers" section on the Adobe homepage, at:

http://www.adobe.com/Support/TechNotes.html#ti�
http://www.adobe.com/PDFs/TN/TIFF6.pdf

or on the Adobe FTP server:

ftp://ftp.adobe.com/pub/adobe/DeveloperSupport/TechNotes/PDF�les/TIFF6.pdf

or in paper form for $25US by calling 1-800-831-6395.

TIFF support in Europe may be obtained via email or from Adobe's BBS in Edinburgh, Scotland:

Email: eurosupport@adobe.com
BBS: +44 131 458 4666

The Adobe Acrobat reader for PDF �les may be obtained for free from:

ftp://ftp.adobe.com/pub/adobe/Applications/Acrobat/

Technical information on Aldus products, including the TIFF Class F speci�cation, is available from Adobe's Automated Technical Support for
Aldus Products FAXback service in which information may be requested automatically via a FAX machine. This service may be reached at 800-
288-6832 (toll-free), or 206-628-5728.

You will also �nd useful TIFF information and tools at:

ftp://ftp.sgi.com/textonly/ti�/ (maintained by Sam Le�er)
http://www-mipl.jpl.nasa.gov/~ndr/ti�/textonly.html (maintained by Niles Ritter)

See the following references for more information about TIFF:

Aldus Corporation. TIFF Developer's Toolkit, Revision 5.0. Seattle, WA, November 1988.
Aldus Corporation. TIFF Developer's Toolkit, Revision 6.0, Seattle, WA, June 1992.
Aldus Corporation. Aldus Developer News, Seattle, WA.
Campbell, Joe. The Spirit of TIFF Class F, Cygnet Technologies, Berkeley, CA. April 1990.
Hewlett-Packard Company. HP TIFF Developer's Manual, Greeley, CO, November 1988.
Katz, Alan, and Danny Cohen, "RFC 1314: A File Format for the Exchange of Images in the Internet," USC Information Sciences Institute,
Marina Del Rey, CA, April 1992.

This document outlines the use of TIFF as a standard format for exchanging facsimile images within the Internet.

Murray, James. "TIFF File Format," C Gazette, Winter 1990-91, pp. 27-42.
RFC 804, "Standardization of Group 3 Facsimile Apparatus for Document Transmission."

This document is a draft of the CCITT Recommendation T.4 explaining the CCITT Group 3 encoding scheme used by TIFF.

This page is taken from the Encyclopedia of Graphics File Formats (/resource/book/1565921615/index.htm) and is licensed by O'Reilly
(http://www.oreilly.com/) under the Creative Common/Attribution license.

More Resources (internal.htm)

Terms of Service (/about/tos.htm) | Privacy Policy (/about/privacy.htm) | Contact Info (/about/contact.htm)

http://www.fileformat.info/resource/book/1565921615/index.htm
http://www.oreilly.com/
http://www.fileformat.info/format/tiff/internal.htm
http://www.fileformat.info/about/tos.htm
http://www.fileformat.info/about/privacy.htm
http://www.fileformat.info/about/contact.htm
https://www.googleadservices.com/pagead/aclk?sa=L&ai=Cim3QWvBeWfHtF4bZ2ATA847QDoOl_rNHka2eyP0DwI23ARABIOvf_gFgpaiqgKgBoAG-ktbNA8gBAqgDAcgDyQSqBKgBT9CMMBfpnpV68EbeiIbgLCvWebwK88S3uJSbB16wCSDf1rlqu0Lq8lPQDBT2j8L7WJFqrzuNMFy_sL7eyTmEH4Cy4Nofg2QkFboQgFNg78yjRWnxXw_ivoS3N3XKuqLf4zeakT-Pwr5nmzht45B9QPsRXZ3rNhbpJdRwZBfSVKjmbJDXCxjmO_AQUJlooCtm2hyvCMUVin66pDJiuO6QVpz9mE6pAERBoAYCgAeq7akyqAevyhuoB6a-G9gHAdIIBQiAYRABsQnZEyfEA1RCKNgTDA&num=1&cid=CAASEuRovLXGQPIQUEOXcnRfhHt9pg&sig=AOD64_2cvFokVMGcrSzIqmAK3WPlf9Y-Hg&client=ca-pub-6975096118196151&adurl=http://www.filesendsuite.com/index.jhtml

